Skip to Content

Sample Actuarial Problems

Apply your math skills to actuarial exam questions.

Actuaries earn professional credentials by passing a series of examinations. This online exam is designed to give you an idea of the types of questions you might encounter on the preliminary actuarial examinations administered by the Casualty Actuarial Society and Society of Actuaries. The sample problems are actual questions from prior exams, but they do not cover all the topics or all levels of difficulty.

Answer the five multiple choice questions below, then click submit to see your results.

1

An insurance company estimates that 40% of policyholders who have only an auto policy will renew next year and 60% of policyholders who have only a homeowners policy will renew next year. The company estimates that 80% of policyholders who have both an auto and a homeowners policy will renew at least one of those policies next year.

Company records show that 65% of policyholders have an auto policy, 50% of policyholders have a homeowners policy, and 15% of policyholders have both an auto and a homeowners policy.

Using the company's estimates, calculate the percentage of policyholders that will renew at least one policy next year.

2

An insurer offers a health plan to the employees of a large company. As part of this plan, the individual employees may choose exactly two of the supplementary coverages A, B, and C, or they may choose no supplementary coverage. The proportions of the company's employees that choose coverages A, B, and C are 1?4 , 1?3 and 5?12 respectively.

Determine the probability that a randomly chosen employee will choose no supplementary coverage.

3

A blood test indicates the presence of a particular disease 95% of the time when the disease is actually present. The same test indicates the presence of the disease 0.5% of the time when the disease is not present. One percent of the population actually has the disease. Calculate the probability that a person has the disease given that the test indicates the presence of the disease.

4

Claim amounts for wind damage to insured homes are independent random variables with common density function

where x is the amount of a claim in thousands.

Suppose 3 such claims will be made.

What is the expected value of the largest of the three claims?

5

The future lifetimes (in months) of two components of a machine have the following joint density function:

What is the probability that both components are still functioning 20 months from now?