Skip to Content

Sample Actuarial Problems

Apply your math skills to actuarial exam questions.

Actuaries earn professional credentials by passing a series of examinations. This online exam is designed to give you an idea of the types of questions you might encounter on the preliminary actuarial examinations administered by the Casualty Actuarial Society and Society of Actuaries. The sample problems are actual questions from prior exams, but they do not cover all the topics or all levels of difficulty.

Answer the five multiple choice questions below, then click submit to see your results.

1

An urn contains 10 balls: 4 red and 6 blue. A second urn contains 16 red balls and an unknown number of blue balls. A single ball is drawn from each urn. The probability that both balls are the same color is 0.44.

Calculate the number of blue balls in the second urn.

2

A company takes out an insurance policy to cover accidents that occur at its manufacturing plant. The probability that one or more accidents will occur during any given month is 3/5.

The number of accidents that occur in any given month is independent of the number of accidents that occur in all other months.

Calculate the probability that there will be at least four months in which no accidents occur before the fourth month in which at least one accident occurs.

3

A car dealership sells 0, 1, or 2 luxury cars on any day. When selling a car, the dealer also tries to persuade the customer to buy an extended warranty for the car. Let X denote the number of luxury cars sold in a given day, and let Y denote the number of extended warranties sold.
P(X = 0, Y = 0) = 1 / 6
P(X = 1, Y = 0) = 1/12
P(X = 1, Y = 1) = 1 /6
P(X = 2, Y = 0) = 1 /12
P(X = 2, Y = 1) = 1 /3
P(X = 2, Y = 2) = 1/6

What is the variance of X?

4

The stock prices of two companies at the end of any given year are modeled with random variables X and Y that follow a distribution with joint density function

What is the conditional variance of Y given that X = x ?

5

An insurer's annual weather-related loss, X, is a random variable with density function

Calculate the difference between the 30th and 70th percentiles of X.